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Abstract
The dynamic expectation maximization algorithm (dEM)

has been developed to determine the kinetic information of
various metabolic processes from SPECT projection data
acquired with a single slow camera rotation. Depth-dependent
detector response compensation (DRC) has been tested as a
means to improve the accuracy of these reconstructions. As
well, by limiting the number of temporal frames in a dSPECT
reconstruction, it is hoped that improved image quality will
result. With this reduction in temporal frames, it becomes
possible to use block-iterative type reconstruction methods to
decrease reconstruction time.

To test the effect of DRC in the dEM algorithm, a series
of computer simulations have been performed using the
dMCAT phantom modified to model the kinetic response
to Tc-99m Teboroxime. Reconstructions indicate that the
inclusion of three dimensional DRC with the dEM algorithm
improves image quality compared to no DRC. Furthermore,
dynamic reconstructions are able to provide additional
information, namely kinetic parameters, not attainable with
static reconstruction methods. A reduction in the number of
temporal frames reconstructed resulted in slightly increased
image quality and time activity curve accuracy, but at the
expense of decreased temporal resolution. Such a reduction
may be acceptable if the temporal changes present are not great
compared to the data acquisition time.

I. INTRODUCTION

In a conventional SPECT study, it is possible for the
distribution of the radiotracer within the body to change over
the acquisition time. If such a temporal change is significant,
inconsistent projection measurements will result when acquired
with a conventional slow camera rotation [1]. Often such a
temporal change may be the result of physiologcal changes in
the body related to organ function and as such, may provide
information useful for diagnostic purposes. In order to obtain
estimates of these dynamic processes, dynamic SPECT using
multiple fast rotations of a SPECT camera has often been used
in the past [2]. However, such data collection often results in a
low signal to noise ratio, thus resulting in poor reconstructed
images. Alternative methods of dynamic SPECT have been
proposed that produce tomographic kinetic information, while
maintaining a conventional slow camera rotation. We will
denote such a data acquisition technique as dSPECT (dynamic
SPECT) and will present in this paper, improvements to the
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dynamic expectation maximization algorithm (dEM) for
determining the temporal behaviour of activity within an object
from data acquired in such a manner.

In our method of dSPECT, temporal changes in the
radiotracer distribution within an object are represented in
terms of linear inequality constraints over time [3]. Once
transformed into this representation, it is possible to use a
modified version of the expectation maximization algorithm in
order to reconstruct the changes in activity that occur over the
data acquisition time.

In conventional SPECT, it has been determined that in
most cases, improvements in reconstruction accuracy and
lesion detectability result when the 3D depth-dependent
nature of SPECT spatial resolution is taken into account in
the reconstruction process [4]. This aids the reconstruction
by making the projection data more consistent as each object
voxel is sampled over a number of detector elements at each
projection angle. This is similarly the case in dSPECT and it
has been shown that reconstruction accuracy improves when
multiple projection angles are acquired simultaneously at
the same time point [3]. Thus, the inclusion of 3D detector
response compensation (DRC) into the dEM algorithm should
result in improved dSPECT reconstruction quality, and hence
more accurate kinetic estimates.

Because of the rather large computational demand involved
in reconstructing a dynamic SPECT data set, previous
implementations of the dEM algorithm have focused on
reconstructing transverse slices with depth-dependent detector-
response within each slice only. As well, at each projection
angle, a separate radiotracer distribution was reconstructed.
While such a method results in high temporal resolution, this
quickly produces an overabundance of data when reconstructed
with fully 4D methods (eg., 64 − 128 × 128 × 128 images
≈ 500MB of data). Because of this, when a high degree of
temporal resolution is not required, it would be advantageous
to reduce the number of temporal frames reconstructed. As
well as reducing computer requirements, this should provide
improved image quality as the data from each temporal
frame is better supported across a subset of projection angles.
Computation time can also be reduced in this scenerio as it
allows for block-iterative reconstruction methods to be used as
we shall see.

II. DYNAMIC EXPECTATION MAXIMIZATION

The dEM algorithm [5] reconstructs a series of three
dimensional spatial images of the tracer distribution within the
object. For example, from dSPECT projection data acquired of



a 128 × 128 × 128 object over 64 projections, the current dEM
algorithm reconstructs 64 different 128 × 128 × 128 images,
where each image corresponds to one of the 64 time frames
when a projection was acquired.

A. Linear Inequality Temporal Constraints
For a given object voxel, any change in activity from one

time frame to the next can be represented in terms of the activity
difference over the time frames. Two possibilities exist for how
the activity can vary over two consecutive time frames. These
are:

i) Decreasing activity from one frame to the next.

x0 ≥ x1 ≥ 0 or x0 − x1 ≥ 0 (1)

ii) Increasing activity from one frame to the next.

0 ≤ x0 ≤ x1 or x1 − x0 ≥ 0 (2)

In both cases, the differences have been written so as to
provide a positive quantity. As well, when the difference
between two consecutive time frames is equal to zero, we
have x0 = x1 (ie., static behaviour). Over all J time frames,
we can denote the differences in activity within the kth voxel
as the vector x̃k, and relate it to the voxel activity xk by the
matrix-vector product,

x̃k = Akxk (3)

where Ak is a matrix of size (J × J) and xk and x̃k are vectors
of length J , representing the activity and the activity difference
respectively, within the kth object voxel over the J time
frames. It should be pointed out that each object voxel will
have a corresponding difference matrix Ak, which can then be
combined together in a large matrix A for the entire object.

The simple temporal constraints of (1) and (2) are sufficient
to describe a variety of clinical circumstances (eg., washout
from the kidneys, accumulation in the liver or bladder, etc.)
[6], but they are not able to describe other cases comprised
of a combination of both increasing and decreasing behaviour.
For such cases, it is possible to formulate a difference matrix
by using a combination of (1) and (2) that, when operating
on the activity vector, will produce positive activity differences
at each time and with the desired overall temporal behaviour.
With a temporal link established through the use of the linear
inequality temporal constraints, we can now turn our attention
to determining the activity difference vector x̃k. For this, we
will make use of iterative reconstruction methods, particularly
the expectation maximization algorithm [7], although it will be
seen that any non block-iterative reconstruction method (eg.,
ART, MART, etc) will suffice at this point.

B. Dynamic Projection Operator
In the conventional expectation maximization (EM)

algorithm, a forward projection operator is applied to the
estimated activity distribution within the object at each
projection angle. This estimated projection is then compared

to the actual collected data for the same angle and then
backprojected into the object space in order to arrive at a
scaling factor for each object voxel. Mathematically, the
projection and backprojection operations can be written as
matrix-vector products so that the EM algorithm for SPECT
can be written,

xn+1
k =

xn
k

∑I,J
i,j=1 Cijk

I,J
∑

i,j=1

Cijkyij
∑K

k′=1 Cijk′xn
k′

(4)

where xk represents the estimated activity in the kth object
voxel, Cijk is the projection matrix that maps the voxelized
three dimensional activity distribution into the two dimensional
camera space, and yij represents the actual measured values in
the ith detector element at the jth projection stop. Here the
object activity distribution xk is assumed to remain fixed over
all the projection measurements acquired and so the size of
the projection operator is (I ∗ J × K) where I is the number
of detector elements, J is the number of projection stops, and
K is the number of object voxels in the reconstructed three
dimensional object space. The projection operator, Cijk can
be written as a matrix comprised of the following:

C =











(Ci1k)
(Ci2k)

...
(CiJk)











(5)

where the (Cijk)’s represent the projection of the kth object
voxel into the detector element i at the jth projection angle.

In the dynamic case however, the projection operator is no
longer an (I ∗ J × K) matrix since the object distribution is
different at each projection angle, but rather is a (I ∗J ×K ∗J)
matrix. In the dynamic case, the dynamic projection operator
(for a single detector head) can therefore be written as,

C̃ =











(Ci1k) 0 0 0
0 (Ci2k) 0 0

0 0
. . . 0

0 0 0 (CiJk)











(6)

The use of a Gaussian diffusion projection matrix for
modelling the three dimensional depth dependent camera
response has been shown to be both computationally efficient
and accurate in static SPECT reconstruction algorithms [4].
For this reason, it was chosen to use this method in order to
perform the projection and backprojection steps in the dEM
algorithm. Due to space limitations, the reader is directed to
[4, 8, 9] for more information on Gaussian diffusion DRC.

C. The Dynamic EM Algorithm
As mentioned previously, for any temporal behaviour, an

appropriate linear difference matrix can be obtained so that the
difference in activity between any two consecutive time frames
will always be a positive quantity. As positivity constraints
in the unknown variable are inherent in the expectation



maximization algorithm, it is natural to proceed to use this
algorithm in order to solve the dynamic SPECT problem.

Following along the lines of the static EM algorithm (4), a
dynamic version can be obtained using the activity differences.
Thus, the dEM algorithm can be written as,

x̃
n+1
k =

x̃
n
k

∑I,J
i,j=1(C̃A−1)ijk

I,J
∑

i,j=1

(C̃A−1)ijkyij
∑K

k′=1(C̃A−1)ijk′x̃n
k′

(7)

where the vector x̃k is the activity difference vector for the
kth voxel and is related to the activity by equation (3). Notice
that the projection step is actually a projection of the estimated
activity distribution within the object at the appropriate time
interval. Following reconstruction, the activity difference vector
is converted into the activity vector by xk = A−1

k x̃k.

Given the amount of data produced in a typical dSPECT
scan, it is often desireable to reduce the number of unknown
variables in order to reduce computational demands. In order
to do this, when a high degree of temporal resolution is not
required, the number of frames reconstructed can be reduced
by altering the dynamic projection matrix such that the tracer
distribution remains constant over a subset of angles. Thus,
if the number of projection angles is J , and N is the desired
number of temporal frames (N ≤ J), then over each J/N
angles, the object activity vector x can be held constant. In
such a case, the projection matrix can be written,

C̃ =






















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











(8)

Similarly, the sizes of the difference matrix Ak and the activity
vector xk shrink to (N × N ) and (N × 1) respectively. As
each temporal frame is reconstructed based upon the projection
data of a few angles, it is possible to apply block-iterative
reconstruction methods at this point in order to decrease
reconstruction time, for example, grouping the subsets as
{

(Ci1k) ,
(

Ci(J/N+1)k

)

, ...
}

,
{

(Ci2k) ,
(

Ci(J/N+2)k

)

, ...
}

, etc.

III. SIMULATIONS

To test the accuracy of the fully 4D dEM algorithm,
simulations were performed using a version of the dMCAT
[10] model modified to model the extraction and washout
of Tc-99m Teboroxime [11]. Kinetic parameters used in
this model were based on those found from compartmental
modelling of Teboroxime within canine myocardium [2].

Two scenerios were simulated with the dMCAT consisting
of a healthy myocardium and the same myocardium with an
anterior wall defect. Projection data starting at 1 min post-
injection was created using an analytic projector model of a dual

head SPECT camera. Detector heads were placed in the 90◦

configuration and acquisition proceeded from LAO and RAO
to LPO and LAO respectively for each head (ie., 90◦ rotation
per head) in a circular orbit of radius 30 cm. A total of 32
projections per head (20 s per projection) were acquired into
64 × 64 pixel matrices with a pixel size of 6.25 cm. For both
heads, a low energy, high resolution collimator was simulated
with a FWHM of 1.59 cm at 30 cm. Noiseless projection data
was generated and scaled to 5 million total counts and randomly
generated Poisson noise added.

Reconstructions were carried out using the static MLEM and
the dEM algorithms both with and without the inclusion of 3D
detector response. dEM was used with high temporal resolution
using all 32 time frames, as well as with 8 and 16 frames. In all
cases, a total of 150 iterations were performed.

IV. RESULTS AND DISCUSSION

In Figure 1, the impact of using 3D DRC can be seen on
a single short axis slice shown at t = 2 min. Reconstructions
were performed both with and without 3D DRC. It is apparent
from these reconstructions, that when DRC is applied to a
dEM reconstruction, improved images result. In this time
frame, it appears that the inferior wall of the myocardium is
better distinguished in the DRC reconstruction. Additionally,
contamination from the liver into the myocardium also appears
to be lessened in the 3D DRC image compared to the no DRC
image. In both cases, reconstructed time activity (TA) curves
disagree to some extent with true TA behaviours, although the
general trend for each organ is obtainable and in fact, the initial
fast uptake of tracer into the myocardium is distinguishable in
the first two time frames.
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Figure 1: Short axis slice of dMCAT phantom at t = 2 min obtained
from dEM reconstruction with and without DRC.

Figure 2 shows sample images of the same short axis slice
reconstructed with differing numbers of temporal frames.
Images produced from 16 or 8 frames appear very similar, but
slight differences can be seen between the dEM and static
MLEM reconstructions. At the time frame shown, contrast
between the myocardium and the defect appears slightly



greater in the dEM reconstructions compared to the MLEM
result. Additionally, the effect of activity uptake into the liver
is reduced in dEM vs static reconstructions as the dynamic
reconstruction is able to account for the increasing liver activity
over time, thus minimizing streak artifacts in the inferior heart
wall. Regional TA curves appear very similar in all dEM
reconstructions, although the initial fast myocardial uptake is
no longer apparent when decreased to 16 temporal frames.
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Figure 2: Short axis slice of dMCAT phantom at t = 2 min obtained
from dEM reconstruction with fewer temporal frames and with DRC.

It was seen in this simulation that the location of the
myocardial defect was able to be determined through both
dynamic and static reconstructions. With static methods,
images depict an average activity within each object voxel. In
this simulation, the data acquisition was started soon enough
and was short enough so that the average activity within the
myocardium was higher than that in the defect. However, if the
acquisition is started later, or if the acquisition time is longer,
a static reconstruction may depict the defect with a greater
activity, thus giving the appearance of a healthy myocardium.
If reconstructed with a dynamic method such a dEM, this effect
will not occur as the defect and healthy myocardium can be
distinguished based on their dynamic parameters. However,
as one decreases the number of temporal frames in a dEM
reconstruction, this effect may become more important.

V. CONCLUSION

A fully 4D dynamic expectation maximization algorithm
has been presented for use in dynamic SPECT imaging using
slow acquisitions. Depth-dependent spatial resolution is
modelled through an incremental Gaussian diffusion, while
temporal constraints are enforced in the object at each time
frame. These constraints can model a wide range of temporal
behaviours, and can be reduced in number in order to decrease
reconstruction time and computer requirements. Additionally,
reducing temporal frames allows for the possibility of
performing an adaptive framing method whereby temporal
frames are finely sampled when rapid changes in activity occur
and are more coarsely sampled during slow changes.

In computer simulations, the inclusion of DRC in this
algorithm has resulted in increased reconstruction accuracy
compared with no DRC. As well, by limiting the number
of temporal frames in the reconstruction, slightly improved
reconstructions result as each reconstructed frame is supported
by multiple projection angles. However, one must be cautious
of reducing the number of temporal frames too much as a
resultant decrease in temporal resolution follows.
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